on the spark plug]] A spark plug (sometimes, in British English, a sparking plug, and, colloquially, a plug) is a device for delivering electric current from an ignition system to the combustion chamber of a spark-ignition engine to ignite the compressed fuel/air mixture by an electric spark, while containing combustion pressure within the engine. A spark plug has a metal Screw thread shell, electrically isolated from a central electrode by a ceramic insulator. The central electrode, which may contain a resistor, is connected by a heavily insulated wire to the output terminal of an ignition coil or ignition magneto. The spark plug's metal shell is screwed into the engine's cylinder head and thus electrically grounded. The central electrode protrudes through the porcelain insulator into the combustion chamber, forming one or more between the inner end of the central electrode and usually one or more protuberances or structures attached to the inner end of the threaded shell and designated the side, earth, or ground electrode(s).
Spark plugs may also be used for other purposes; in Saab Direct Ignition when they are not firing, spark plugs are used to measure ionization in the cylinders – this ionic current measurement is used to replace the ordinary cam phase sensor, knock sensor and misfire measurement function. Spark plugs may also be used in other applications such as furnaces wherein a combustible fuel/air mixture must be ignited. In this case, they are sometimes referred to as flame igniters.
Early patents for spark plugs included those by Nikola Tesla (in for an ignition timing system, 1898), Frederick Richard Simms (GB 24859/1898, 1898) and Robert Bosch (GB 26907/1898). Only the invention of the first commercially viable high-voltage spark plug as part of a ignition magneto-based ignition system by Robert Bosch's engineer Gottlob Honold in 1902 made possible the development of the spark-ignition engine. Subsequent manufacturing improvements can be credited to Albert Champion, to the Alexander Lodge, sons of Sir Oliver Lodge, who developed and manufactured their father's idea and also to Kenelm Lee Guinness, of the Guinness family, who developed the KLG brand. Helen Blair Bartlett played a vital role in making the insulator in 1930.
As the current of electrons surges across the gap, it raises the temperature of the spark channel to 60,000 Kelvin. The intense heat in the spark channel causes the ionized gas to expand very quickly, like a small explosion. This is the "click" heard when observing a spark, similar to lightning and thunder.
The heat and pressure force the gases to react with each other, and at the end of the spark event there should be a small ball of fire in the spark gap as the gases burn on their own. The size of this fireball, or kernel, depends on the exact composition of the mixture between the electrodes and the level of combustion chamber turbulence at the time of the spark. A small kernel will make the engine run as though the ignition timing was delayed, and a large one as though the timing was advanced.
Spark plugs are specified by size, either thread or nut (often referred to as Euro), sealing type (taper or crush washer), and spark gap. Common thread (nut) sizes in Europe are 10 mm (16 mm), 14 mm (21 mm; sometimes, 16 mm), and 18 mm (24 mm, sometimes, 21 mm). In the United States, common thread (nut) sizes are 10mm (16mm), 12mm (14mm, 16mm or 17.5mm), 14mm (16mm, 20.63mm) and 18mm (20.63mm).2015 Champion Master Spark Plug Applications Catalog, p. VI
Older spark plugs, particularly in aircraft, used an insulator made of stacked layers of mica, compressed by tension in the centre electrode.
With the development of Tetraethyllead in the 1930s, lead deposits on the mica became a problem and reduced the interval between needing to clean the spark plug. Sintered alumina was developed by Siemens in Germany to counteract this. Sintered alumina is a superior material to mica or porcelain because it is a relatively good thermal conductor for a ceramic, it maintains good mechanical strength and (thermal) shock resistance at higher temperatures, and this ability to run hot allows it to be run at "self cleaning" temperatures without rapid degradation. It also allows a simple single piece construction at low cost but high mechanical reliability. The dimensions of the insulator and the metal conductor core determine the heat range of the plug. Short insulators are usually "cooler" plugs, while "hotter" plugs are made with a lengthened path to the metal body, though this also depends on the thermally conductive metal core.
In the late 1970s, the development of engines reached a stage where the heat range of conventional spark plugs with solid nickel alloy centre electrodes was unable to cope with their demands. A plug that was cold enough to cope with the demands of high speed driving would not be able to burn off the carbon deposits caused by stop–start urban conditions, and would foul in these conditions, making the engine misfire. Similarly, a plug that was hot enough to run smoothly in town could melt when called upon to cope with extended high speed running on motorways. The answer to this problem, devised by the spark plug manufacturers, was to use a different material and design for the centre electrode that would be able to carry the heat of combustion away from the tip more effectively than a solid nickel alloy could. Copper was the material chosen for the task and a method for manufacturing the copper-cored centre electrode was created by Floform.
The central electrode is usually the one designed to eject the electrons (the cathode, i.e. negative polarity relative to the engine block) because it is normally the hottest part of the plug; it is easier to emit electrons from a hot surface, because of the same physical laws that increase emissions of vapor from hot surfaces (see thermionic emission).International Harvester, Truck Service Manual TM 5-4210-230-14&P-1 - Electrical - Ignition Coils and Condensers, CTS-2013-E p. 5 (PDF page 545) In addition, electrons are emitted where the electrical field strength is greatest; this is from wherever the radius of curvature of the surface is smallest, from a sharp point or edge rather than a flat surface (see corona discharge). Using the colder, blunter side electrode as negative requires up to 45 percent higher voltage, so few ignition systems aside from wasted spark are designed this way.NGK, Wasted Spark Ignition Waste spark systems place a greater strain upon spark plugs since they alternately fire electrons in both directions (from the ground electrode to the central electrode, not just from the central electrode to the ground electrode). As a result, vehicles with such a system should have precious metals on both electrodes, not just on the central electrode, in order to increase service replacement intervals since they wear down the metal more quickly in both directions, not just one.See p. 824 of the 2015 Champion Master Catalog. http://www.fme-cat.com/catalogs.aspx
It would be easiest to pull electrons from a pointed electrode but a pointed electrode would erode after only a few seconds. Instead, the electrons emit from the sharp edges of the end of the electrode; as these edges erode, the spark becomes weaker and less reliable.
At one time it was common to remove the spark plugs, clean deposits off the ends either manually or with specialized sandblasting equipment and file the end of the electrode to restore the sharp edges, but this practice has become less frequent for three reasons:
The development of noble metal high temperature electrodes (using metals such as yttrium, iridium, tungsten, palladium, or ruthenium, as well as the relatively high value platinum, silver or gold) allows the use of a smaller center wire, which has sharper edges but will not melt or corrode away. These materials are used because of their high melting points and durability, not because of their electrical conductivity (which is irrelevant in series with the plug resistor or wires). The smaller electrode also absorbs less heat from the spark and initial flame energy.
Polonium spark plugs were marketed by Firestone from 1940 to 1953. While the amount of radiation from the plugs was minuscule and not a threat to the consumer, the benefits of such plugs quickly diminished after approximately a month because of polonium's short half-life, and because buildup on the conductors would block the radiation that improved engine performance. The premise behind the polonium spark plug, as well as Alfred Matthew Hubbard's prototype radium plug that preceded it, was that the radiation would improve ionization of the fuel in the cylinder and thus allow the plug to fire more quickly and efficiently.
A spark plug gap gauge is a disc with a sloping edge, or with round wires of precise diameters, and is used to measure the gap. Use of a feeler gauge with flat blades instead of round wires, as is used on distributor points or poppet valve lash, will give erroneous results, due to the shape of spark plug electrodes. The simplest gauges are a collection of keys of various thicknesses which match the desired gaps and the gap is adjusted until the key fits snugly. With current engine technology, universally incorporating solid state ignition systems and computerized fuel injection, the gaps used are larger on average than in the era of and breaker point distributors, to the extent that spark plug gauges from that era cannot always measure the required gaps of current cars.For example, in the 1967 Champion spark plug catalog, the "Deluxe Gap Tool & Gauges" on p. 38 is designed to handle gaps from , which is less than the gap required by many modern cars. As for older cars before c. 1960, notice the vintage vehicle section of the 1997 AC Delco Spark Plug Catalog, page 250 to 264. Gaps in the 1920s for many makes were often . However, many modern cars have gaps not much larger, such as those made by Volvo from 1967 to 2014 normally had gaps of . See this make's listings in the 2015 Champion Master Spark Plug Application Catalog, pp. 333 to 339, for which the only exception were some 4.4 liter engines. Vehicles using compressed natural gas generally require narrower gaps than vehicles using gasoline.For example, the Ford Crown Victoria's 4.6 liter engine required a gap when using CNG, but requires a gap when using gas. See the 2015 Champion Master Spark Plug Application Catalog, p. 124; a technical explanation is found on p. 825.
The gap adjustment (also called "spark plug gapping") can be crucial to proper engine operation. A narrow gap may give too small and weak a spark to effectively ignite the fuel-air mixture, but the plug will almost always fire on each cycle. A gap that is too wide might prevent a spark from firing at all or may misfire at high speeds, but will usually have a spark that is strong for a clean burn. A spark which intermittently fails to ignite the fuel-air mixture may not be noticeable directly, but will show up as a reduction in the engine's power and fuel efficiency. Gap adjustment is not recommended for iridium and platinum spark plugs, because there is a risk of damaging a metal disk welded to the electrode.
The protrusion of the tip into the chamber also affects plug performance, however; the more centrally located the spark gap is, generally the better the ignition of the air-fuel mixture will be, although experts believe the process is more complex and dependent on combustion chamber shape. On the other hand, if an engine is "burning oil", the excess oil leaking into the combustion chamber tends to foul the plug tip and inhibit the spark; in such cases, a plug with less protrusion than the engine would normally call for often collects less fouling and performs better, for a longer period. Special "anti-fouling" adapters are sold which fit between the plug and the head to reduce the protrusion of the plug for just this reason, on older engines with severe oil burning problems; this will cause the ignition of the fuel-air mixture to be less effective, but in such cases, this is of lesser significance.
A spark plug is said to be "hot" if it is a better heat insulator, keeping more heat in the tip of the spark plug. A spark plug is said to be "cold" if it can conduct more heat out of the spark plug tip and lower the tip's temperature. Whether a spark plug is "hot" or "cold" is known as the heat range of the spark plug. The heat range of a spark plug is typically specified as a number, with some manufacturers using ascending numbers for hotter plugs, and others doing the opposite – using ascending numbers for colder plugs.
The heat range of a spark plug is affected by the construction of the spark plug: the types of materials used, the length of insulator and the surface area of the plug exposed within the combustion chamber. For normal use, the selection of a spark plug heat range is a balance between keeping the tip hot enough at idle to prevent fouling and cold enough at maximal power to prevent pre-ignition or engine knocking. By examining "hotter" and "cooler" spark plugs of the same manufacturer side by side, the principle involved can be very clearly seen; the cooler plugs have a more substantial ceramic insulator filling the gap between the center electrode and the shell, effectively allowing more heat to be carried off by the shell, while the hotter plugs have less ceramic material, so that the tip is more isolated from the body of the plug and retains heat better.
Heat from the combustion chamber escapes through the exhaust gases, the side walls of the cylinder and the spark plug itself. The heat range of a spark plug has only a minute effect on combustion chamber and overall engine temperature. A cold plug will not materially cool down an engine's running temperature. (A too hot plug may, however, indirectly lead to a runaway pre-ignition condition that can increase engine temperature.) Rather, the main effect of a "hot" or "cold" plug is to affect the temperature of the tip of the spark plug.
It was common before the modern era of computerized fuel injection to specify at least a couple of different heat ranges for plugs for an automobile engine; a hotter plug for cars that were mostly driven slowly around the city, and a colder plug for sustained high-speed highway use. This practice has, however, largely become obsolete now that cars' fuel/air mixtures and cylinder temperatures are maintained within a narrow range, for purposes of limiting emissions. Racing engines, however, still benefit from picking a proper plug heat range. Very old racing engines will sometimes have two sets of plugs, one just for starting and another to be installed for driving once the engine is warmed up.
Spark plug manufacturers use different numbers to denote heat range of their spark plugs. Some manufacturers, such as Denso and NGK, have numbers that become higher as they get colder. By contrast, Champion, Bosch, BRISK, Beru, and ACDelco use a heat range system in which the numbers become bigger as the plugs get hotter. As a result, heat range numbers need to be translated between the different manufacturers and cannot be casually interchanged as equals.
A light brownish discoloration of the tip of the block indicates proper operation; other conditions may indicate malfunction. For example, a sandblasted look to the tip of the spark plug means persistent, light engine knocking is occurring, often unheard. The damage that is occurring to the tip of the spark plug is also occurring on the inside of the cylinder. Heavy detonation can cause outright breakage of the spark plug insulator and internal engine parts before appearing as sandblasted erosion but is easily heard. As another example, if the plug is too cold, there will be deposits on the nose of the plug. Conversely if the plug is too hot, the porcelain will be porous looking, almost like sugar. The material which seals the central electrode to the insulator will boil out. Sometimes the end of the plug will appear glazed, as the deposits have melted.
An idling engine will have a different impact on the spark plugs than one running at full throttle. Spark plug readings are only valid for the most recent engine operating conditions and running the engine under different conditions may erase or obscure characteristic marks previously left on the spark plugs. The most valuable information is gathered by running the engine at high speed and full load, immediately cutting the ignition off and stopping without idling or low speed operation and removing the plugs for reading.
Spark plug reading viewers, which are simply combined flashlight/magnifiers, are available to improve the reading of the spark plugs.
|
|